|
Joined: Jun 2004
Posts: 13
Forum Member
|
OP
Forum Member
Joined: Jun 2004
Posts: 13 |
I have a question about when to specify NTRFRQ and when not to specify it. It's automatically set to 0 as the default unless specified. In my Periodic boundary condition with ewald summations, it says that I should specify a non-zero NTRFRQ and after reading, if IPRFRQ is less than NTRFRQ and it is not = to 0 it will result in errors because of negative square roots.
What are the reasons? What are some general guidlines to go by if using ewald summations or some other electrotatic calculation? Is there a big difference between the two, if specified or not in a md simulation?
Thanks so much for all of your help!
|
|
|
|
Joined: Oct 2003
Posts: 783
Forum Member
|
Forum Member
Joined: Oct 2003
Posts: 783 |
I'm not sure about the square root error, but NTRFRQ should be set to 50 or 100 during a periodic boundary simulation. This stops the kinetic energy from redistributing from the atomic degress of freedom to rotational and translation degrees of the entire system. there is a paper by Cheatham from a few years ago that discusses this; i think the title contains the term "flying icecube" IPRFRQ is the print frequency. this should be equal to or a multiple of NTRFRQ.
alex
School of Pharmacy University of Maryland 20 Penn Street Baltimore, MD, 21201
|
|
|
|
Joined: Sep 2003
Posts: 8,659 Likes: 26
Forum Member
|
Forum Member
Joined: Sep 2003
Posts: 8,659 Likes: 26 |
I think the "negative square root" comment in the documentation may no longer be true; there are certainly other such "legacy" comments in the .doc files, such as "SHAKE doesn't work with ABNR".
NTRFRQ could be a bit larger, such as 1000 or 5000 steps, but it does need to be done regularly for systems using Ewald and PBC.
Rick Venable computational chemist
|
|
|
|
Joined: Sep 2004
Posts: 43
Forum Member
|
Forum Member
Joined: Sep 2004
Posts: 43 |
Hello, everyone.
I have another question about this correction. The documentation defines NTRFRQ as "the step frequency for stopping the rotation and translation of the molecule during dynamics". Does anyone know if this refers to the centre of mass of the solute (protein) or of the whole system? If it is the entire system, would this still affect the motion of a protein fixed in space? The protein's CM does move during dynamics, but I'm wondering if this translation is being damped because of this correction.
J. Valencia.
|
|
|
|
Joined: May 2009
Posts: 17
Forum Member
|
Forum Member
Joined: May 2009
Posts: 17 |
I see unrealistic energy drifts or Temperature dramatically drops at every NTRFRQ, then the thermostat brings it up to 298K quickly and the Temp still averages around the desired T.
If the same script run in serial, this does not happen.
I've tried using NTRFRQ of 500, 2000 and 5000 but it is still the same.
Here is number of steps vs Temp where NTRFRQ was 2000: (This is a constant P simulation with PBC and Ewald)
DYNA> 0 101.82021 DYNA> 500 292.56681 DYNA> 1000 294.03164 DYNA> 1500 294.00821 DYNA> 2000 296.35426 DYNA> 2000 109.20435 ** DYNA> 2500 304.29684 DYNA> 3000 301.72762 DYNA> 3500 302.40833 DYNA> 4000 293.33502 DYNA> 4000 143.80550 ** DYNA> 4500 299.03628 DYNA> 5000 295.94476 DYNA> 5500 301.50405 DYNA> 6000 298.92981 DYNA> 6000 100.61126 ** DYNA> 6500 289.49014 DYNA> 7000 297.08095 DYNA> 7500 296.22182 DYNA> 8000 297.96478 DYNA> 8000 113.12729 ** DYNA> 8500 292.78126 DYNA> 9000 297.32491 DYNA> 9500 300.98892 DYNA> 10000 308.11360 DYNA> 10000 148.18669 **
Last edited by TGK; 10/14/09 09:29 PM.
|
|
|
|
Joined: Sep 2003
Posts: 8,659 Likes: 26
Forum Member
|
Forum Member
Joined: Sep 2003
Posts: 8,659 Likes: 26 |
I've heard that AMBER does this on every time step, e.g. NTRFRQ 1, so you may wish to try smaller values. There's insufficient information to say anything more.
Rick Venable computational chemist
|
|
|
|
Joined: Sep 2003
Posts: 4,883 Likes: 12
Forum Member
|
Forum Member
Joined: Sep 2003
Posts: 4,883 Likes: 12 |
NTRFRQ should not influence the temperature of your system (at least not so much...). We have never seen any trace of the flying ice-cube in CHARMM simulations, so NTRFRQ is not very important, except perhaps in certain kinds of calculations (Ewald?).
I guess that the data you show are temperature vs number of steps. Is anything else happening (eg velocity rescaling) when the temperature is dropping? It is strongly recommended to show actual (brief and relevant!) input/output rather than filtered (by your brains and fingers) descriptions.
Lennart Nilsson Karolinska Institutet Stockholm, Sweden
|
|
|
|
Joined: May 2009
Posts: 17
Forum Member
|
Forum Member
Joined: May 2009
Posts: 17 |
I've observed flying ice-cube kind of behavior when I used a large NTRFRQ (9999999.) When I visualize the trajectory, the whole system was clearly moving in one direction very fast.
Below, I copied part of the output (when the step # is 2000):
DYNA> 2000 4.00000 -9905.17912 2958.40203 -12863.58115 296.35426 DYNA PROP> 14.94794 -9890.35859 2997.09252 14.82054 3337.58775 DYNA INTERN> 204.79661 717.22765 64.93361 610.32137 25.25269 DYNA EXTERN> 852.71347 -9614.37106 0.00000 0.00000 0.00000 DYNA IMAGES> 56.81154 -1932.74044 0.00000 0.00000 0.00000 DYNA EWALD> 302.59179 -69467.71774 65316.59935 0.00000 0.00000 DYNA PRESS> 698.69788 -2923.75638 -997.19135 -1322.25605 48043.43578 DYNA XTLE> -11296.52102 -38.38690 -1392.92335 0.98646 ---------- --------- --------- --------- --------- --------- Crystal Parameters : Crystal Type = CUBI DYNA A = 36.35337 B = 36.35337 C = 36.35337 DYNA Alpha = 90.00000 Beta = 90.00000 Gamma = 90.00000 DYNA PIXX = -1017.75 PIYY = -1469.07 PIZZ = -1479.95 DYNA PIXY = 205.75 PIXZ = -397.14 PIYZ = -12.49 DYNA Gradient Norm = 57.65885
DYNAMC> Averages for the last 1000 steps: AVER DYN: Step Time TOTEner TOTKe ENERgy TEMPerature AVER PROP: GRMS HFCTote HFCKe EHFCor VIRKe AVER INTERN: BONDs ANGLes UREY-b DIHEdrals IMPRopers AVER EXTERN: VDWaals ELEC HBONds ASP USER AVER IMAGES: IMNBvdw IMELec IMHBnd RXNField EXTElec AVER EWALD: EWKSum EWSElf EWEXcl EWQCor EWUTil AVER PRESS: VIRE VIRI PRESSE PRESSI VOLUme AVER XTLE: XTLTe SURFtension XTLPe XTLtemp ---------- --------- --------- --------- --------- --------- AVER> 1000 4.00000 -9796.87462 2974.52000 -12771.39462 297.96886 AVER PROP> 14.52205 -9786.31053 3006.11897 10.56409 1703.69317 AVER INTERN> 185.33036 701.86591 61.27895 593.83122 22.07340 AVER EXTERN> 801.32138 -9517.84495 0.00000 0.00000 0.00000 AVER IMAGES> 23.92132 -1804.12633 0.00000 0.00000 0.00000 AVER EWALD> 311.73661 -69467.71774 65316.93525 0.00000 0.00000 AVER PRESS> 1809.68841 -2945.48385 -2574.27718 -1339.55537 48199.95369 AVER XTLE> -11290.20284 37.16098 -1493.85952 235.87371 ---------- --------- --------- --------- --------- --------- Lattice Parameters> Averages for the last 1000 steps: Crystal Parameters : Crystal Type = CUBI AVER A = 36.39275 B = 36.39275 C = 36.39275 AVER Alpha = 90.00000 Beta = 90.00000 Gamma = 90.00000 AVER PIXX = -1315.35 PIYY = -1497.63 PIZZ = -1205.69 AVER PIXY = 22.29 PIXZ = -146.98 PIYZ = 111.00 AVER Gradient Norm = 149.28043
DYNAMC> RMS fluctuations for the last 1000 steps: FLUC> 1000 4.00000 75.29710 39.24785 66.83405 3.93161 FLUC PROP> 0.27635 74.46436 39.46627 2.97416 1136.34768 FLUC INTERN> 16.01179 25.63727 4.91273 14.26394 2.88486 FLUC EXTERN> 54.64298 86.57928 0.00000 0.00000 0.00000 FLUC IMAGES> 21.26724 86.38090 0.00000 0.00000 0.00000 FLUC EWALD> 12.20004 0.00000 2.23563 0.00000 0.00000 FLUC PRESS> 719.52278 340.55916 1023.17832 480.95123 184.75409 FLUC XTLE> 4.80966 137.56791 72.25656 294.49733 ---------- --------- --------- --------- --------- --------- Lattice Parameters> RMS fluctuations for the last 1000 steps: Crystal Parameters : Crystal Type = CUBI FLUC A = 0.04647 B = 0.04647 C = 0.04647 FLUC Alpha = 0.00000 Beta = 0.00000 Gamma = 0.00000 FLUC PIXX = 656.92 PIYY = 672.43 PIZZ = 719.09 FLUC PIXY = 451.97 PIXZ = 418.12 PIYZ = 434.60 FLUC Gradient Norm = 59.04240
DYNAMC> Averages for the last 2000 steps: LAVE> 2000 4.00000 -9693.71067 2976.04001 -12669.75069 298.12112 LAVE PROP> 14.09419 -9685.81878 3000.18814 7.89189 1580.57332 LAVE INTERN> 157.08264 656.49949 50.56237 603.77136 19.39429 LAVE EXTERN> 823.37438 -9605.17040 0.00000 0.00000 0.00000 LAVE IMAGES> 19.32879 -1595.91003 0.00000 0.00000 0.00000 LAVE EWALD> 351.54586 -69467.71774 65317.48829 0.00000 0.00000 LAVE PRESS> 1679.27943 -2732.99498 -2377.94707 -1038.62921 48446.45087 LAVE XTLE> -11282.93858 71.89055 -1608.88163 272.31065 ---------- --------- --------- --------- --------- --------- Lattice Parameters> Averages for the last 2000 steps: Crystal Parameters : Crystal Type = CUBI LAVE A = 36.45460 B = 36.45460 C = 36.45460 LAVE Alpha = 90.00000 Beta = 90.00000 Gamma = 90.00000 LAVE PIXX = -1096.83 PIYY = -1386.95 PIZZ = -632.11 LAVE PIXY = -11.05 PIXZ = -199.44 PIYZ = 102.84 LAVE Gradient Norm = 141.26957
DYNAMC> RMS fluctuations for the last 2000 steps: LFLC> 2000 4.00000 396.93309 318.58153 163.99348 31.91351 LFLC PROP> 0.49088 395.20239 317.10754 26.18522 1484.49453 LFLC INTERN> 35.87503 58.32175 13.37246 19.97723 4.62943 LFLC EXTERN> 95.74885 222.13388 0.00000 0.00000 0.00000 LFLC IMAGES> 25.34128 311.59437 0.00000 0.00000 0.00000 LFLC EWALD> 79.79414 0.00000 3.33438 0.00000 0.00000 LFLC PRESS> 848.55099 641.17183 1201.82729 1001.85183 286.66896 LFLC XTLE> 8.47327 1840.73640 434.40785 330.73002 ---------- --------- --------- --------- --------- --------- Lattice Parameters> RMS fluctuations for the last 2000 steps: Crystal Parameters : Crystal Type = CUBI LFLC A = 0.07195 B = 0.07195 C = 0.07195 LFLC Alpha = 0.00000 Beta = 0.00000 Gamma = 0.00000 LFLC PIXX = 1152.96 PIYY = 888.02 PIZZ = 1465.71 LFLC PIXY = 469.45 PIXZ = 421.80 PIYZ = 406.34 LFLC Gradient Norm = 63.44438
DRIFT/STEP (LAST-TOTAL): -0.16574614 -0.21970085 E AT STEP 0 : -9703.3546 -9466.0081 CORR. COEFFICIENT : -0.64254588 -0.32096043
DETAILS ABOUT CENTRE OF MASS POSITION : -0.15254881 -0.10634869 0.40600406 VELOCITY : -6.02991621E-02 -2.16858513E-02 5.51894033E-02 ANGULAR MOMENTUM : 2970.2974 -102.76485 -3140.7645 KINETIC ENERGY : 97.719446 WRIDYN: RESTart file was written at step 2000 DYNA DYN: Step Time TOTEner TOTKe ENERgy TEMPerature DYNA PROP: GRMS HFCTote HFCKe EHFCor VIRKe DYNA INTERN: BONDs ANGLes UREY-b DIHEdrals IMPRopers DYNA EXTERN: VDWaals ELEC HBONds ASP USER DYNA IMAGES: IMNBvdw IMELec IMHBnd RXNField EXTElec DYNA EWALD: EWKSum EWSElf EWEXcl EWQCor EWUTil DYNA PRESS: VIRE VIRI PRESSE PRESSI VOLUme DYNA XTLE: XTLTe SURFtension XTLPe XTLtemp ---------- --------- --------- --------- --------- --------- DYNA> 2000 4.00000 -11773.43187 1090.14928 -12863.58115 109.20435 DYNA PROP> 14.94794 -11062.84847 2160.61036 710.58340 107108.07683 DYNA INTERN> 204.79661 717.22765 64.93361 610.32137 25.25269 DYNA EXTERN> 852.71347 -9614.37106 0.00000 0.00000 0.00000 DYNA IMAGES> 56.81154 -1932.74044 0.00000 0.00000 0.00000 DYNA EWALD> 302.59179 -69467.71774 65316.59935 0.00000 0.00000 DYNA PRESS> 698.69788 -72104.08243 -997.19135-100852.18252 48043.43578 DYNA XTLE> -11296.52102 -38.38690 -1392.92335 0.98646 ---------- --------- --------- --------- --------- --------- Crystal Parameters : Crystal Type = CUBI DYNA A = 36.35337 B = 36.35337 C = 36.35337 DYNA Alpha = 90.00000 Beta = 90.00000 Gamma = 90.00000 DYNA PIXX = -8886.55 PIYY = -125674.97 PIZZ = -167995.03 DYNA PIXY = -30861.99 PIXZ = -135860.86 PIYZ = -151486.98 DYNA Gradient Norm = 57.65885
UPDECI: Image update at step 2011
SELECTED IMAGES ATOMS BEING CENTERED ABOUT 0.000000 0.000000 0.000000 UPDECI: Nonbond update at step 2011 UPDECI: Image update at step 2020
SELECTED IMAGES ATOMS BEING CENTERED ABOUT 0.000000 0.000000 0.000000 UPDECI: Nonbond update at step 2020 UPDECI: Image update at step 2030
SELECTED IMAGES ATOMS BEING CENTERED ABOUT 0.000000 0.000000 0.000000 UPDECI: Nonbond update at step 2030 UPDECI: Image update at step 2043
SELECTED IMAGES ATOMS BEING CENTERED ABOUT 0.000000 0.000000 0.000000 UPDECI: Nonbond update at step 2043 UPDECI: Image update at step 2054
SELECTED IMAGES ATOMS BEING CENTERED ABOUT 0.000000 0.000000 0.000000 UPDECI: Nonbond update at step 2054 UPDECI: Image update at step 2064
SELECTED IMAGES ATOMS BEING CENTERED ABOUT 0.000000 0.000000 0.000000 UPDECI: Nonbond update at step 2064 UPDECI: Image update at step 2074
SELECTED IMAGES ATOMS BEING CENTERED ABOUT 0.000000 0.000000 0.000000 UPDECI: Nonbond update at step 2074 UPDECI: Image update at step 2086
SELECTED IMAGES ATOMS BEING CENTERED ABOUT 0.000000 0.000000 0.000000 UPDECI: Nonbond update at step 2086 UPDECI: Image update at step 2099
SELECTED IMAGES ATOMS BEING CENTERED ABOUT 0.000000 0.000000 0.000000 UPDECI: Nonbond update at step 2099 DYNA> 2100 4.20000 -10637.40919 2791.01797 -13428.42716 279.58677 DYNA PROP> 14.95906 -10615.53614 2831.21105 21.87305 -566.30679 DYNA INTERN> 178.08940 655.48034 54.44868 581.49181 16.98408 DYNA EXTERN> 923.86509 -10247.48132 0.00000 0.00000 0.00000 DYNA IMAGES> 27.90640 -1749.33908 0.00000 0.00000 0.00000 DYNA EWALD> 280.71527 -69467.71774 65317.12992 0.00000 0.00000 DYNA PRESS> 2266.80582 -1889.26795 -3235.01560 -5.56800 48046.42460 DYNA XTLE> -12794.78841 158.28973 -2165.76781 33.91946 ---------- --------- --------- --------- --------- --------- Crystal Parameters : Crystal Type = CUBI
|
|
|
|
Joined: Sep 2003
Posts: 8,659 Likes: 26
Forum Member
|
Forum Member
Joined: Sep 2003
Posts: 8,659 Likes: 26 |
Reduce NTRFRQ, esp. with Ewald; try 50 or 100
Rick Venable computational chemist
|
|
|
|
Joined: Sep 2003
Posts: 4,883 Likes: 12
Forum Member
|
Forum Member
Joined: Sep 2003
Posts: 4,883 Likes: 12 |
post your input, this is odd
Lennart Nilsson Karolinska Institutet Stockholm, Sweden
|
|
|
|
|